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Part |: The optimal stopping problem (OSP)

» Given
(A) a stochastic process X = {X;: t > 0} taking values in £
(B) adiscountrate r > 0,
(C) a payoff function g(x): £ — [0, ).
» Find:
() V(x), the value function,
(1) 7*, the optimal stopping time,

such that

V(x) = sup Exe "g(X;) = Exe™ g(X)
TEM




Technical details

» There is an underlying measurable space (2, F), a
filtration {F;}, and a family of probabilities {Py}, such that
X is a continuous time Markov process taking values in R.

» M = {7} is the class of all stopping times:

7:Q—[0,00], {7 <t} € F; VL.



A first example

(A) The stochastic process is Brownian motion {B;} on R.
(B) The discount rateis r = 2.

(C) The payoff function is the identity

g(x) = x* = max(x, 0),

The optimal stopping problem is:

Find V(x), 7 s.t.

V(x)=supEe ?(x+B,)" =Ee 2" (x + B+)"
TEM




Solution

The solution was found by M.H. Taylor (1968, Annals of Math.
Statistics). Denoting x* = 1/2, it is given by

1 2x—1 : *
5€ if x < x*.

_)2 )
V(x) = . .
X, if x > x*,

™ =inf{t >0: x+ B >1/2}

» The point x* is the critical threshold, and determines 7*,
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» The payoff function g(x) (data)
» The value function V(x) (solution)
» The optimal threshold x* = 1/2 (solution)



The problem can be formulated as an ODE with moving

boundary. The differential operator associated with the process

IS

1
Xg_ Ygn
LXf = of",

We are solving the problem
Xp= e <o
2 — )
f>g,
(LXf — rf)(f — g) = 0.

Here g(x) = x™.



Part Il: General optimal stopping problems

» Given
(A) a stochastic process X = {X;: t > 0} taking values in £
(B) adiscountrate r > 0,
(C) a payoff function g(x): £ — [0, ).
» Find:
() V(x), the value function,
(1) 7*, the optimal stopping time,

such that

V(x) = sup Exe "g(X;) = Exe™ g(X)
TEM




Our approach

When considering optimal stopping we typically find two
classes of results:

» Concrete problems: explicit solutions to concrete optimal
stopping problems (fixed X and g)

» Theoretical results: for wide classes of processes and
reward functions.



Verification approach

» Usually in concrete problems, one —somehow— guesses
the solution

» Apply the smooth fit principle: solve the continuous fit
equation and the smooth fit equation.

» Finally, prove that this guess in fact solves the optimization
problem.

» This approach, when an explicit solution can be found, is
very effective. Details in Chapter IV of Peskir and Shiryaev
(2006).



Theoretical results

Relevant initial results are

» the super-martingale characterization of the solution by
Snell (1952)

» the Markovian characterization by Dynkin (1963): V is the
least excessive function, that is larger or equal than g.



Representation approach

» We consider X as a Markov process

» We represent V as an integral of the Green function with
respect to p(dx).

V(x) = /g Gr (%, y)u(dy) = /S Gi(x, y)u(dy)

» the support of x is the stopping region S of the problem,
giving the optimal stopping rule 7*.



Main assumptions
X = {X;: t > 0} is a standard Markov process

» The infinitesimal generator L is defined by

Lé(x) = lim Ex ¢(Xt) — #(x)

h—0 h

» The Green kernel of the process is defined by

Gi(x, dy) = / e P (X, € dy)at.
0

» We assume the existence of a measure m(dy) such that

Gr(x,dy) = Gr(x,y)m(dy).



Main ingredients:

» Dynkin’s characterization of the value function: V is the
least r-excessive function such that V(x) > g(x) for all x

» Riez’s representation of an r-excessive functions V:

V(x)—/gG,(x,y),u(dy)+(r—harmonic function)  (R)

» Inversion formula: the infinitesimal generator and the
resolvent are inverse operators, for a test function ¢

o0 = [ T Gxy)(r— Dey)mdy) ()



Key properties - Riesz Representation R

» As the harmonic term provides constant reward, the
representation (R) becomes

V(x) = /g Gr(x, y)u(dy).

» As V is harmonic on A if and only if u(A) =0, and V'is
harmonic on the continuation region C, we have

V(x) = /S Gi(x, y)u(dy)

where S is the stopping region.

This approach was initiated by Salminen (1985) with the Martin
Kernel, see also M.-Salminen (2007)



Summarizing

We have obtained
V0O = [ Grlx.y)ulay), (R
V00 = [ Glxy)(r = DVI)m(a) (F)
We further know that g = V in S. Under the assumption
(r=L)V(x)=(r—L)g(x) forxe S

for x € S we conclude that the representing measure is

| u(dy) = (r — L)g(y)m(dy) inS.|

Remaining problem: find S



Optimal stopping for diffusions in R

» Functions i y ¢ are the fundamental solutions of the
equation
Lf = rf,

where L is the infinitesimal generator.
» The Green kernel satisfies

wow(X)e(y),  x<y;
GI’(X7 y) =
W lp(Y)e(x), x>y

where w; is a norming constant (the Wronskian)



To find S = [x*, c0) we solve the equation:

g(x*) = w;! / P(X*)e(y)(r — L)g(y)m(dy).
X*
For the Brownian motion, life is simple:
G(x,y) = e V&,

because
B(x)=eV2,  p(x)= eV

Based on this approach, we solve problems where the solution
is not differentiable at x*. !

'Crocce-M. Stochastics (2013)



Part lll: Multidimensional optimal stopping

We have now r > 0, a multidimensional Wiener process
X =W .. . 6 w9

and a function
9:RY 5 R,

and want to solve the problem

V(x) = sup Exe "g(X;) = Exe™ " g(X;)
TEM




Comments

» In fact, g(X:) is a one-dimensional process, but in general
it is not Markovian.

» If g(x) = g(Ax) where A is a rotation, then it is Markovian.
In this case, the problem can be solved with
one-dimensional techniques.

» The PDE formulation is

LXf = %Afg f,

f>g,
(LXf — rf)(f — g) = 0.



Representation approach

Theorem?
(a) The continuation set C is the solution to the Green Kernel
equation:

/C Gr(x, y)(r — L)g(x)dx =0,
forall x € S.
(b) The continuation set C is the solution to the Martin Kernel
equation:

/ e (r—L)g(x)dx =0,
c

for all a € R9 s.t. ||a||? = 2r, {h(x) = e} is the set of
r-harmonic functions.

(c) The set C is unique in a convenient class of sets.

2Joint work with S. Christensen, F. Crocce and P. Salminen



Example
X=(W' W3,  g(x,y)=x*+a?y>

If « = 1 the process g(X(t)) is a Bessel(2) process, and the
problem transforms in a one-dimensional problem. If o« # 1 itis
a “true” multidimensional problem.

We have an infinitesimal generator

Lf = ~Af,

1
2
The function V satisfies

» LV = rV in the continuation region C

» g = Vin the stopping region S = C°

» C should be found



Solving the Martin Kernel equation

We have for each a an equation, and the unknown is the set C
(or its boundary).

/ e (r—L)g(x)dx =0,

c

By super-martingale arguments we know that C > N, where
N={xeR?: (r-L)g(x) <0},

is the negative set.



Discretization

So we take affine polar coordinates to determine C, and
discretize the problem: Given N, denoting

0; =1i/(2rN) (0 <i < N)
we determine the unknowns p; = p(6;) with conditions

8 ~ ¢y = j/(2rN) (0 < j < N):

N—1
ZFZ Pi Y Ia¢j :ZF'I(’Y(eh(b]))v 0§I7I<N
i=0

We plot the solution fora =2and r =1 and r = 0.3,
considering N = 64.



Solution

» The red setis {(r — L)g(x) < 0} the negative set
» The blue line delimitates the optimal stopping region



Example: 3 dimensional problem

» The process is a three dimensional Brownian motion

X =W w2 w?3),

» The reward function is quadratic:
g(x,y,2) = x* + a®y? + 522°.
(For illustration we take o =2, =3, r=1).

» The computations are similar, with spherical coordinates.



Solution

» The inner setis {(r — L)g(x) < 0} the negative set
» The violet surface delimitates the optimal stopping region



iMuchas gracias!
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